Amanani a-natural
Natural numbers example
Numbers less than 0 (such as −1) are not natural numbers. |
Amanani a-natural, asoloko ebizwa ngokuba ngamanani okubala, nganmanani asetyenziselwa ukubala izinto. Maxa wambi inani elilodwa elingu-zero kuthiwa nalo linanieli-natural. Maxa wambi u-inye ubizwa ngokuba lelona nani li-natural lakhe lalincinane. Amanani a-natural asoloko engamanani a-pheleleyo azii-(integers) kwaye akasokuze abe ngaphantsi kuka-zero.
Akukho nani li-natural likhe libe lelona likhulu kunamanye. Inanani eli-natural elinokulandela lingafumaneka kuphela ngokuthi kongezwe u-1 kwelo nani li-natural nelikhoyo ngaloo mzuzu, kutsho kwenzeke amanani ayakuqhubeka evela "umphelo". Akukho nani lingathi li-natural liphinde libe-infinite. Naliphi na inani eli-natural lingafumaneka ngokongeza u-1 kwinani eli-natural nekulelona lakhe lalincinane.
Amanani angekho natural
tshintshaEzi ntlobo zamanani zilandelayo akungomanani a-natural:
- Amanani angaphantsi ko-0 (amanani a-negative), umzekelo, −2 −1
- ii-Fractions, umzekelo, ½ 3¼
- ii-Decimals, umzekelo, 7.675
- amanani a-Irrational, umzekelo, , (pi)
- amanani a-Imaginary, umzekelo, (i)
- i-infinity, umzekelo,
Basic operations
tshintsha- Ukudibanisa/ukongeza; Isiphumo somdibaniso wamanani amabini a-natural siba linani eli- natural.
- Multiplication": Isiphumo sophinda-phindo lwamanani amabini a-natural siba linani eli-natural.
- Ulandelelwaniso: lwamanani amabini a-natural, ukuba akafani, ngoko ke elinye likhulu kunelinye, lize elinye libe lincinane. m = n or m > n or m < n
- Ukuba u- l > m ke u-l + n > m + n aze yena u-l x n > l x m
- U-Zero lelona nani lincinane kuwo onke amanani a-natural: 0 = n or 0 < n
- Kumanani a-natural akukho nani likhulu ukodlula amanye amanani n < n + 1
- "Ukuthabatha okanye ukuphungula": ukuba u-n mncinane kuno-m then u-m minus n linani eli-natural. Ukuba If n < m then m - n = p.
- Ukuba u-l - m = n then l = n + m
- ukuba u-n mkhulu kuno-m, then u-m minus n akulonani li-natural
- Ukuba u-i = m - n no-p < n then l > m - p
- Ukwahlula-hlula: Ukuba then
- I-Mathematical induction: ukuba ezi zinto zimbini ziyinyaniso yayo nayiphi na i-property P yamanani a-natural, then u-P uyinyaniso yalo lonke inani eli-natural
Amanani a-natural ngokukodwa
tshintsha- Ii-Even numbers: Ukuba u-n = m x 2, then u-n uyi-even number
- Ii-even numbers ngoo-0, 2, 4, 6, njalo najlo. U-Zero uyeyona even number incinane (yokuqala).
- Ii-Odd numbers: Ukuba u-n = m x 2 +1, then u-n uyi-odd number
- Inani lisenokuba even okanye libe-odd kodwa alinakubanazo zombini ezi mpawu.
- Ii-odd numbers ngoo-1, 3, 5, 7,njalo njalo.
- Ii-Composite numbers: Ukuba u-n = m x l, no-m kunye no-l abango-0 okanye 1, then u-n uyi-composite number.
- Ii-composite numbers ngoo-4, 6, 8, 9, 10, 12, 14, 15,16,18,21 njalo njalo.
- Ii-Prime numbers: ukuba inani alingo-0, 1, libe lingeyo-composite number, then liyi-prime number
- Ii-prime numbers ngoo-2, 3, 5, 7, 11, 13, 17, njalo njalo. Isibini silelona nani lincinane (okanye lokuqala) le-prime number. Isibini kukuphela kwenani eliyi-even prime number.
- Akukho prime number yongamele ezinye ngobukhulu.
- Ii-Square numbers: ukuba u-n = m x m, then u-n usi-square. u-n usi-square sika-m.
- Izi-squares ngoo-0, 1, 4, 9, 16, 25,36,49 and so on.